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Flow pattern exchange in the Taylor-Couette system with a very small aspect ratio
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Numerical investigation is carried out on the flow pattern exchanges found in Taylor-Couette flows between
two concentric rotating cylinders. The inner cylinder rotates while the outer cylinder and both end walls are
stationary. The aspect ratio~column length/gap width! is small, and its range is from 0.5 to 1.6. Previous
experimental results for this range of the aspect ratio showed that the steady flow patterns are classified into
three groups: the normal two-cell mode, anomalous one-cell mode and twin-cell mode. All modes found by
experiments are predicted in the present numerical calculation. Besides these three flow modes, an unsteady
mode is predicted, which is time dependent and fully developed. The existence of the unsteady mode is also
confirmed by our experiments. When the inner cylinder starts to rotate from rest, vortices at the corners of the
inner cylinder and both end walls develop, and they induce the normal two-cell mode. The flow of the
anomalous one-cell mode or twin-cell mode appears after an abrupt breakdown of symmetric two-cell mode
flows. During the gradual deceleration of the inner cylinder, the transitions of flow modes occur. We observed
mode transitions between the normal two-cell mode and anomalous one-cell mode and mode transitions from
the twin-cell mode to the normal two-cell mode, anomalous one-cell mode, and unsteady mode. The critical
loci where these mode transitions appear are determined. The numerical confirmation of the twin-cell mode is
a different result obtained in the present study.
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I. INTRODUCTION

Taylor-Couette flow between two concentric rotating c
inders with finite axial length includes various patterns
laminar and turbulent flows, and its behavior has attrac
great interest@1,2#. This flow is not only a classical stability
phenomenon in fluid flows but also one of the most imp
tant problems of nonlinear sciences~for example, see@3,4#!.
For engineering applications, this flow is found in journ
bearings, various fluid machinery, and chemical reactors.
unsteady development of flow pattern causes time-depen
variations of property values such as torque and rate of
action, and it is, therefore, meaningful to investigate the tr
sient behavior. The main parameters in Taylor-Couette fl
are the Reynolds number Re based on the rotation spee
the inner cylinder, the aspect ratioG that is the ratio of the
length of cylinders to the gap width between cylinders, a
the radius ratioh of two cylinders. The flow at an infinite o
moderate aspect ratio has provoked a great deal of con
versy @5#.

The seminal paper of Benjamin@6# followed by those of
Benjamin and Mullin @7# and Mullin @8# unveiled a new
dynamical aspect in the Taylor-Couette system with stati
ary end walls, and classified the modes of Taylor-Coue
flow into primary and secondary modes. The primary mo
appears when the Reynolds number is increased smoo
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from small values. The secondary mode occurs when
inner cylinder is abruptly accelerated above a certain va
Both primary and secondary modes have a normal mode
an anomalous mode. On each end wall, the flow of the n
mal mode has a normal cell that gives an inward flow in
region adjacent to the end wall. The flow of the anomalo
mode has an anomalous cell that gives an outward flow n
the end wall. Bolstad and Keller@9# showed that the station
ary condition of the cylinder end walls may cause t
anomalous mode. Nakamuraet al. @10# and Toyaet al. @11#
observed the flows with stationary end walls and the flo
with one stationary end wall and one free surface, resp
tively. They clarified bifurcation processes originating fro
the secondary modes, occasionally via another secon
mode, to the primary modes during the deceleration of
rotating inner cylinder. Alziary de Roquefort and Grillau
@12# and Soboliket al. @13# confirmed that when the flow
between rotating cylinders with finite length develops fro
rest, a secondary flow generates a vortex on the end wall,
Kuo and Ball @14# showed that as the vortex near the e
wall develops, it induces other vortices in the area away fr
the end wall. Hill’s numerical investigation@15# predicted
four-cell and six-cell transitions found by Benjamin an
Mullin @7#, and concluded that reasonable agreement w
the experimental results was obtained.

Some experimental studies on Taylor-Couette flow w
an aspect ratio of about unity have been made. The exp
mental result of Benjamin and Mullin@7# revealed the exis-
tence of the single-cell mode, and presented the critical
for the single-cell mode in the (G, Re! plane. Buzuget al.
@16# found an oscillatory single-cell flow. Using flow visua
ization, Nakamura and Toya@17# confirmed that the flow of
©2002 The American Physical Society06-1
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the anomalous mode had extra cells. They also found tha
twin-cell flow appeared after the development of the ex
cells. While there are a lot of experimental works on mo
transitions at small aspect ratios, few numerical studies s
to have been done. Cliffe@18# used a finite element discret
zation for the steady Navier-Stokes equations and de
mined the critical loci for the single-cell mode in the (G, Re!
plane. Pfisteret al. @19# used the steady equations and co
pared the numerical results with the experimental results
very short annulus. The numerical investigations of Stre
and Hussaini@20# and Mage`re and Deville@21# confirmed
the flow developing from the normal two-cell mode to t
single-cell mode. However, more flow modes and mode
changes are shown by the experimental work@17# than those
found in these numerical studies.

Turing’s paper@22# is a pioneering one about the patte
formation in the nonlinear dynamics, and it suggested
mathematical model of the chemical reaction-diffusion s
tems that may develop a pattern or structure due to an in
bility of the homogeneous equilibrium. After Turing, mo
and more studies have progressively appeared to ana
transient dynamics~for example,@23,24#!. In the field of the
Taylor-Couette system, however, in spite of complicated
perimental results about transitional flow states@10,11#, no
detailed numerical study about this transient system is
ported within our knowledge. The purpose of the pres
study is to predict the well developed flows and the flo
pattern transitions during the deceleration of the in
cylinder.

The aspect ratio is of order of unity (0.5<G<1.6), and
the inner cylinder rotates while the outer cylinder and b
end walls are stationary. In the following, Sec. II describ
the basic equations and numerical method used in the pre
study and Sec. III presents numerical results. Section
gives a discussion on mode transitions and Sec. V g
conclusions.

II. BASIC EQUATIONS AND NUMERICAL METHOD

The length of concentric two rotating cylinders is finit
The inner cylinder rotates, and the end walls and the o
cylinder are fixed. All physical parameters are made in
mensionless form by a reference length that is the gap w
between two cylinders and a reference velocity, which is
maximum circumferential velocity of the inner cylinder a
tained during each run of a calculation. Dimensionless ra
of the inner cylinder and the outer cylinder arer i and r o ,
respectively, andr o2r i51. The length of the cylinder is
given by l and the aspect ratioG is defined byl /(r o2r i).
The Reynolds number based on the characteristic veloci
denoted by Re0, and the Reynolds number based on an
stantaneous rotation velocity of the inner cylinder is Re.

The governing equations are the unsteady axisymme
Navier-Stokes equations and the equation of continuity
pressed in the cylindrical coordinate system (r ,u,z) that is
suitable for the present calculation
03630
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where t is time, (u,v,w) is the velocity components in th
directions of (r ,u,z) andp is the pressure.

The basic solution procedure is the marker and c
~MAC! method. The Poisson equation for pressure is
follows:
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where D is divergence of the velocity vector. A hybri
method of successive over-relaxation method~SOR! and
conjugate gradient squared method with incomplete low
and upper triangular matrices decomposition precondition
~ILUCGS! is used to solve the Poisson equation. The ti
integration is the Euler explicit method, and the spatial d
ferentiation is the quadratic upstream interpolation for co
vective kinematics~QUICK! method for convection terms
and the second-order central difference method for ot
terms@25#.

The boundary conditions for the velocity components
the cylinder walls and both end walls are the no-slip con
tions. The pressure boundary conditions are the Neum
conditions that are obtained from the pressure terms of
mentum equations. The initial values of all velocity comp
nents are zero in the entire domain. Att50, the Reynolds
number abruptly changes from zero to Re0.

The staggered grid is adopted and the grid interval is u
form in each direction. The number of grid points in th
radial direction is 80, and the number of grid points in t
axial direction is determined by the proportionality to th
cylinder length with 80 points for the aspect ratio of unit
6-2
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FLOW PATTERN EXCHANGE IN THE TAYLOR-COUETTE . . . PHYSICAL REVIEW E 65 036306
Even though the grids were refined by halving the spacin
each direction, the difference of the numerical results is w
less than 1%. This ensures that the number of grid po
used in the present calculation is large enough not to e
observable influence on results.

When the time variation of relative torque on cylinde
remains less than 1024, a steady state of time-developin
flow is judged to be attained. For the calculations of t
decelerating flows, the Reynolds number begins to decre
when a fully steady state is established att5t1, and the
linear decrease continues fromt5t1 to t11t2. After the de-
celeration, the Reynolds number is kept constant again.

The Stokes’ stream functionc for the flow visualization is
given by

u52
1

r

]c

]z
, w5

1

r

]c

]r
. ~6!

The results of the present calculation are compared w
experimental results obtained by Nakamura and Toya@17#.
Their experimental apparatus had an inner cylinder wit
radius of 20 mm and an outer cylinder with a radius of
mm, and the radius ratioh is 0.667. The dimensionless time
t1 and t2 correspond to 50 seconds in the dimensional fo
when they are evaluated with the physical dimensions
cylinders and the kinematic viscosity (631026 m2/s) of
aqueous solution of glycerol used in their experiment. T
range of the Reynolds numbers is from 100 to 1500. In
following, for the purpose of better understanding, thez co-
ordinate is normalized not by the characteristic length but
the axial length of the working fluidl.

III. RESULTS

A. Steady mode in fully developed flow

In this section, steady-state flows established after a s
den start of the inner cylinder are presented. Figure 1 sh
three steady modes: normal two-cell mode, anomalous o
cell mode, and twin-cell mode. It displays the contours of
stream functionc in the meridional section, and the rotatin
inner cylinder is on the left and the stationary outer cylind
is on the right. The end wall would be refereed as an uppe
lower wall, if necessary. The contours of the stream funct
are accompanied by plus symbols% , which indicate that the
rotating direction of vortices is clockwise, and minus sy
bols *, which indicate that the rotating direction is counte
clockwise.

When the Reynolds number is small, stable flows of
normal two-cell mode are formed. The normal two-cell mo
flow in Fig. 1 gives inward flows near the end walls, and t
flow is outward between cells. The terminal points of t
boundary between two cells are on the inner and outer
inder walls. A symmetric flow pattern and an asymmet
flow pattern appear as shown in Fig. 1~a! and Fig. 1~b!, re-
spectively. The asymmetric pattern is established via a pi
fork bifurcation from the symmetric flow@19#. Even in the
asymmetric flow, each cell extends on the whole region
one end wall, and it does not reach both end walls.
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Figure 1~d! shows an example of the anomalous one-c
mode. The main cell is anomalous, and it rotates in the co
terclockwise direction. Two extra cells rotating in the cloc
wise direction accompany the anomalous cell: one is at
inner lower corner and the other is at the outer lower corn
The terminal points of the boundaries between the ano
lous cell and extra cells are on the inner or outer cylind
wall and the end wall to which the extra cells are attach
The calculated flow pattern agrees with the experimental
sult shown in Fig. 1~c!. Cliffe @18# obtained three distinc
flow patterns by calculations, which are ‘‘stable two-ce
mode,’’ ‘‘unstable asymmetric flow,’’ and ‘‘single-cel
mode.’’ Both the asymmetric normal two-cell mode shown
Fig. 1~b! and the anomalous one-cell mode shown in F
1~d! are what are called ‘‘single-cell mode’’ by Cliffe. Th
asymmetric two-cell mode has no extra cell and the ano
lous one-cell mode has extra cells at the corners of the
nulus, and they need to be classified as different mode f

FIG. 1. Contours of the stream function in the flows with norm
two-cell mode, anomalous one-cell and twin-cell modes. Symb
% and* indicate the clockwise and counterclockwise rotating
rections, respectively. The intervals of the stream function are
follows. ~a! 0.01. ~b! 0.014 for main vortex and 0.0047 for sma
vortex at inner lower corner.~d! 0.003 for main vortex and 0.0006
for two small vortices at lower corners.~e! 0.005 for left large
vortex at inner upper corner and 0.0023 for other vortices.
6-3
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each other. Therefore, the present paper distinguishes
asymmetric normal two-cell mode from the anomalous o
cell mode.

When the aspect ratio is from 0.6 to 0.9 and the Reyno
number is from 1000 to 1500, the twin-cell mode is esta
lished @Fig. 1~e!#. Two large cells and one small extra ce
appear. The small extra cell is located at the inner low
corner. One terminal point of the boundary between t
large cells is on the end wall opposite to the wall to whi
the extra cell is attached.

B. Formation process of the steady mode

At the beginning of the mode formation process of t
normal two-cell mode, two vortices appear at the inner up
and inner lower corners. After they touch with each othe
the midplane in the axial direction, they grow in the rad
direction. Finally, the flow field becomes a stable norm
two-cell mode@Fig. 1~a!#.

In the mode formation process of the anomalous one-
mode, two large vortices grow, and the normal two-c
mode, which is mentioned above, is established as an in
mediate state. Then, one vortex collapses the other vo
and reaches both end walls. The collapsed vortex is divi
into two extra cells at the inner and outer cylinder sides, a
the anomalous one-cell mode appears@Fig. 1~d!#.

The mode formation process of the twin-cell mode is
follows. After the normal two-cell mode flow is formed, on
vortex becomes dominant. The dominant vortex divides
other vortex into two small vortices. The divided small vo
tex at the inner cylinder side remains as an extra cell at
corner between the inner cylinder wall and the end wall. T
other small vortex at the outer cylinder side does not de
but develops gradually. The developing vortex touches w
the upper and lower end walls, and it becomes as large a
dominant vortex. The dominant vortex is in the inner half
the flow region and the developed vortex is in the outer h
region @Fig. 1~e!#.

C. Unsteady mode in fully developed flow

An unsteady and fully developed flow mode appears ot
than the normal two-cell mode, anomalous one-cell mo
and twin-cell mode mentioned in Sec. III A. Here after, th
time-dependent mode is called an unsteady mode. In ord
distinguish various global flow patterns, we need to int
duce some measures. The spatially averaged enstrophy
the kinetic energy have clear physical meanings, and they
deserved to be the suitable measures of the flow field.
present the mean enstrophyV that is given by

V5
1

AES

1

2 S ]u

]z
2

]w

]r D 2

drdz, ~7!

whereS is an integral domain andA is the area of a meridi-
onal section.

Figure 2 shows the profiles of the unsteady mode flo
The aspect ratio is 0.5 and the Reynolds number is 1500.
time variation in the mean enstrophy is shown in Fig. 2~a!.
The numbers from 1 to 6 denote the time points that
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referred to in Figs. 2~b!–2~g!. The time variation in the mean
enstrophy is not smooth and the value decreases sudd
from the time point 4 to 5. The mean kinetic energy in t
meridional section has variation similar to that of the me
enstrophy. Figures 2~b!–2~g! include the contours of the
stream functionc at each time point. At time point 1@Fig.
2~b!#, the flow has four vortices and a small vortex appear
the inner lower corner. The mean enstrophy is minimum
this time point. As the mean enstrophy increases, the vo
closest to the outer cylinder decays and three vortices rem
@Fig. 2~c!#. When the mean enstrophy increases further,
inner small vortex and outer vortex merge@Fig. 2~d!#. The
enstrophy is maximum at the time point 4@Fig. 2~e!# at
which two large vortices appear. Then each vortex is split
the other@Fig. 2~f!# and four vortices emerge@Fig. 2~g!#. The
flow at the time point 6 is almost mirror symmetric with th
flow at the time point 1. After the time point 6, the flow fiel
traces back from the time point 5, via the time points 4,
and 2, to the time point 1. From this, two periods in t
variation of the mean enstrophy in Fig. 2~a! correspond to

FIG. 2. Unsteady motion.~a! Time variation in the mean enstro
phy of the unsteady mode flow.~b!–~g! Variations in the stream-
lines of the unsteady mode flow. Time points are shown in~a!. The
main vortex in each figure is accompanied by the symbol% that
indicates the clockwise rotating direction or the symbol* which
indicates the counterclockwise direction. The aspect ratio is 0.5
the Reynolds number is 1500.
6-4
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one period of the unsteady motion shown in Figs. 2~b!–2~g!.
When the flow traces back from the time point 6 to 1, t
change in the flow pattern is slow from the time point 6 to
and it is rapid from the time point 4 to 1. The mean enst
phy varies at uniform period even after a long time.

D. Mode transition

When fully developed flows at specific Reynolds numb
are decelerated, transitions to other mode flows appear@10#.
The mode transitions among the normal two-cell mo
anomalous one-cell mode, and twin-cell mode have been
served during or after the gradual decrease in the Reyn
number.

Figure 3 shows the time variation of the stream lines d
ing the mode transition from the anomalous one-cell mod
the normal two-cell mode. The aspect ratio is 0.8 and
Reynolds number is linearly decreased from 500 att51500
to 100 att53000. Though a similar transition has been o
served during the reduction of the Reynolds number fr
350 to 340, Fig. 3 is shown for the better understanding
the transition. Att51500, the flow field is the anomalou
one-cell mode that is stable at Re5500. An anomalous cel
accompanies extra cells at the inner and outer cylinder si
As the rotation speed decreases, the extra cells approach
other and merge into one new normal cell, and the nor
two-cell mode appears (t52550). The mode transition from
the normal two-cell mode to the anomalous one-cell mo
was also observed when the Reynolds number was dec
ated. The flow pattern traced back the mode formation p
cess shown in Fig. 3.

The boundaries between the normal two-cell mode
the anomalous one-cell mode in the (G, Re! plane are shown
in Fig. 4. They are delimited at the left and right hands of
range ofG where the mode bifurcations between these t
modes do not appear. In the regions denoted by A and C
normal two-cell mode appears, and the region where

FIG. 3. Development of the flow field from the anomalous on
cell mode to the normal two-cell mode. The aspect ratio is 0.8
the Reynolds number is decreased from 500 att51500 to 100 at
t53000.
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anomalous one-cell mode exists is indicated by~B!. At a
constant aspect ratio, the flow changes from the normal t
cell mode to the anomalous one-cell mode when the R
nolds number on or above the lower limit of the norm
two-cell mode is reduced to the Reynolds number on or
low the upper limit of the anomalous one-cell mode. T
difference of the Reynolds number between the upper
the lower limits are 10.0 and the deceleration is slow
Similarly, the change from the anomalous one-cell mode
the normal two-cell mode occurs when the Reynolds num
on or above the lower limit of the anomalous one-cell mo
is decreased to the Reynolds number on or below the up
limit of the normal two-cell mode. Cliffe’s result@18# ob-
tained by using the steady equations is also given in Fig
Though the radius ratio of the present study~0.667! is larger
than that used by Cliffe~0.615!, the qualitative agreemen
demonstrates the validity of the present study. Cliffeet al.
@26# showed that the lower critical Reynolds numbers
which the anomalous mode loses its stability becomes la
as the radius ratio increases. The result obtained in
present study is not inconsistent with Cliffe’s results.

Figure 5 shows the mode transition from the twin-c
mode to the anomalous one-cell mode at the aspect ratio
and the reduction of the Reynolds number from 1000 to 6
At t53000, the flow mode is the twin-cell mode with a
extra cell around the inner lower corner. As the rotati
speed decreases, the separation point on the upper end
gradually shifts outward and moves onto the outer cylind
Then the flow becomes the anomalous one-cell modet
54800).

The mode transition from the twin-cell mode to the no
mal two-cell mode, anomalous one-cell mode and unste
mode were observed. Figure 6 denotes the bifurcation
separating the twin-cell mode from other modes in the (G,
Re! plane. The bifurcation loci end at the left- and right-ha
sides of the figure where the twin-cell mode does not app

-
d

FIG. 4. Transitions from the anomalous one-cell mode to
normal one-cell mode and transitions from the normal two-c
mode to the anomalous one-cell mode. A and C, regions where
normal two-cell mode appears. B, region where the anomalous
cell mode appears.
6-5
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The flow mode is the twin-cell mode at the Reynolds num
above the line A-B. At the Reynolds number below the lin
C-D, D-E and E-F, the unsteady mode, the normal two-c
mode and the anomalous one-cell mode appear, respect
When the aspect ratio is constant and the Reynolds num
changes from the value on or above the line A-B to the va
on or below the line C-D-E-F, the mode transitions from t
twin-cell mode to the other mode occur. The critical lo
have their minima atG50.74 where the flow mode change
from the twin-cell mode to the normal two-cell mode durin
the reduction of the Reynolds number from 680 to 670.

IV. DISCUSSION

The twin-cell mode has been obtained only by the exp
ment @17#, and the numerical confirmation of the twin-ce
mode is a different evidence obtained in the present st
The bifurcation loci from the twin-cell mode are also pr
sented in this paper.

FIG. 6. Transition from the twin-cell mode. A-B : lower limit o
the twin-cell mode. C-D: upper limit of the unsteady mode. D-
upper limit of the normal two-cell mode. E-F : upper limit of th
anomalous one-cell mode.

FIG. 5. Development of the flow field from the twin-cell mod
to the anomalous one-cell mode. The aspect ratio is 0.8 and
Reynolds number is decreased from 1000 att53000 to 600 att
56000.
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When the Reynolds number exceeds a certain va
Taylor-Couette flow forms time-dependent azimuthal wav
For a relatively small aspect ratio at which the two-cell
four-cell mode appears, Mullin and Benjamin@27# presented
the critical Reynolds number for the onset of the wavy m
tion. On the other hand, Pfisteret al. @19#, Eagles@28#, and
Gerdtset al. @29# reported an unstable axisymmetric oscill
tion of the two-cell flow. Using the experimental apparat
mentioned in Toyaet al. work @11#, we have investigated
flows with the small aspect ratio 0.5, and found the unste
motion. Though the sizes and positions of vortices chan
the flow is not wavy. The unsteady flow motion found by th
experiment has the same order of the period as the one
dicted by the numerical result in Fig. 2~a!. Pfisteret al. @19#
obtained the nondimensionalized frequency for the axisy
metric oscillation. The nondimensional frequency of the u
steady mode shown in Fig. 2~a! is 0.047 and the unstead
mode described in Sec. III C corresponds to the axisymm
ric oscillation revealed by Pfisteret al. While Pfisteret al.
called the oscillation of the flow as ‘‘new two-cell flow,
Figs. 2~b! and 2~g! show that not only two vortices but mor
vortices appear during the unsteady motion.

The anomalous one-cell mode, twin-cell mode, and
steady mode have flow patterns asymmetric with respec
the midplane in the axial direction. Pfisteret al. @19# de-
scribed that imperfections of the apparatus would disconn
the supercritical bifurcations and the single-cell mode ha
duality of the flow states in which a large main vortex and
small weak vortex appear near the top or bottom plate,
spectively. Both states were observed in the experiment
though one state was obtained only by a tricky way such
a sudden start of the inner cylinder. Besides the imperf
tions of the apparatus, the candidates of the factors that s
a solution branch in the bifurcation diagram may be a th
mal disturbance and an incomplete steadiness of an in
state. In the calculation, one of the counterparts of the
perfections is the residual of the numerical scheme. In
present calculation, the reversed sequence of pressure
ables in the Poisson equation has resulted in mirror symm
ric images of flow patterns with respect to the midplane.

V. CONCLUSIONS

In order to clarify some aspects of the transitional pha
in the nonlinear system, the fully developed Taylor-Coue
flow between two concentric rotating cylinders with ve
short lengths has been investigated by the time-depen
numerical method. The aspect ratio is of the order of un
and the inner cylinder rotates while the outer cylinder a
end walls of the cylinders remain stationary. Developing p
cesses of flow modes are predicted. Mode transitions du
the gradual deceleration of the rotation speed of the in
cylinder are clarified.

The existence of the normal two-cell mode, anomalo
one-cell mode, and twin-cell mode is confirmed. In the mo
formation processes of the anomalous one-cell mode
twin-cell mode, almost symmetric flow patterns are form
at first, and then the symmetries break down.
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An unsteady mode of the fully developed flow, which
not wavy Taylor-Couette flow, is obtained. The periods of
unsteady flow in the experiment and the calculation
of the same order. In this mode, each vortex splits the o
vortex at high Reynolds numbers. One period
the dynamic movement of flow fields corresponds to t
periods of the time variation of the mean enstrophy.
s
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Transitions between the normal two-cell mode a
anomalous one-cell mode and transitions from the twin-c
mode to the normal two-cell mode, anomalous one-cell m
and unsteady mode are predicted, and the bifurcation loc
obtained. In the transition between the normal two-cell mo
and anomalous one-cell mode, the growth or decay of
extra cells plays a main role.
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